
A

disarm(j) - the missing manual page

This appendix provides a tutorial and documentation for using disarm. While
seemingly a simple CLI tool, disarm has quite a few advanced features, which put it on
par (and, in many cases, beyond) with expensive commercial disassemblers.

It is the aim of disarm to be an all-in one tool for multiple binary formats, in much
the same way as jtool2(j) was to Mach-O. This was accomplished by refactoring
jtool2 so that its Mach-O functionality was separated from the main, and opening up
an interface to register the other file formats (presently, ELF and PE). jtool2 matched
(and often, vastly improved on) Apple's own Mach-O tools (pagestuff(1), size(1),
segedit(1), dyldinfo(1), and of course otool(1)). Similarly, disarm emulates some
functions of the mighty objdump(1), readelf(1) and Windows' dumpbin.exe. This is
especially important on platforms where these tools are not installed, notably Android
devices.

Note, that disarm does not purport to compete or replace with commercial
disassemblers developed by crews of people with better funding. It was developed for
specific command-line workflows, and has grown immensely useful for its Author, who
thought it would be a good idea to freely share it with researchers and other
enthusiasts.

505

1

1

11.

.

. . Basic Information

Basic Information

Basic InformationBasic Information

When faced with a known binary format (Mach-O, ELF or PE), disarm can be used
to display format-encoded information.

Table A/1-1: disarm(j) switches for basic information

Switch Purpose
-i File format agnostic information

-I File format specific information

-l File format agnostic regions (segments/sections)

-I File format specific regions, and detailed header

1.1. Header/Format

1.1.1. File format agnostic information

Mach-O, ELF and PE all have proprietary headers, but largely encode similar
information. Using -i will display format agnostic information. That is, irrespective of
the file format you can expect (largely) the same output. This makes it useful for
grep(1)ing individual lines (i.e. attributes):

Output A/1-2(a): Demonstrating disarm -i (on a Mach-O binary)

/bin/ls File-format agnostic information:
File type: executable
Format: Mach-O
Target OS: macOS 11.0.0
Architecture: ARM64e (ARMv8.3)
File Size: 0x15af0 (88816) bytes
Linker: /usr/lib/dyld
Text region(s): 0x37dc-0x7420 (@0x1000037dc-0x100007420) (15428/0x3c44 bytes)
 Entry: 0x3a3c
Data region(s): 0xc000-0x10000 (16384/0x4000 bytes)
String region(s): 0x7a34-0x7f28 (1268/0x4f4 bytes)
Linker stubs: 0x7420-0x7960 (1344/0x540 bytes)
BuildID/UUID: 6C62FCB2-5D18-3692-8775-334D211AEB3C
Binary is digitally signed (use --signature to view)

Output A/1-2(b): Demonstrating disarm -i (on an ELF binary)

samples/ls File-format agnostic information:
File type: shared library
Format: ELF
Target OS: Linux 3.0
Architecture: x86_64
File Size: 0x285c8 (165320) bytes
Linker: /lib64/ld-linux-x86-64.so.2
Text region(s): 0x4730-0x17072 (76098/0x12942 bytes)
Data region(s): 0x22000-0x22248 (584/0x248 bytes)
String region(s): 0x10a8-0x16a2 (1530/0x5fa bytes)
Linker stubs: 0x4020-0x4730 (1808/0x710 bytes)
Initializers: 0x20f70-0x20f78
Terminators: 0x20f78-0x20f80

Output A/1-2(c): Demonstrating disarm -i (on a PE binary)

samples/PE/samples/ntoskrnl.exe File-format agnostic information:
File type: executable
Format: PE32+
Target OS: Windows 0.0.0
Architecture: ARM64
File Size: 0x9f55e8 (10442216) bytes
Text region(s): 0x0-0x133000 (@0x140acd000-0x140c00000) (1257472/0x133000 bytes)
 Entry: 0x9dd2d0
Data region(s): 0x998a00-0xab1364 (1149284/0x118964 bytes)

As the above shows, most of the entries are applicable for all file types. Some
particular fields do vary by binary, as in the above ELF binary that has
initializers/terminators, or the Mach-O, which is code signed.

506 Disarming Code

1.1.2. File format specific information

Using -I (note uppercase) will display format specific information. This will parse
and display individual header fields:

Output A/1-3(a): Demonstrating disarm -I (on a Mach-O, matching jtool2(j) output)

morpheus@eM1nent (~)$ disarm -I /bin/ls
Mach-O header information:
Magic: 64-bit Mach-O
Type: executable
CPU: ARM64e (ARMv8.3)
Cmds: 19
Size: 1728
Flags: 0x200085 (NOUNDEFS DYLDLINK TWOLEVEL PIE)

Output A/1-3(b): Demonstrating disarm -I (on an ELF, matching readelf -h(1) output)

morpheus@QiLin (~)$ disarm -I /bin/ls
ELF header information:
 Version: 1
 Type: shared object
 Machine: Advanced Micro Devices x86-64
 Entry point address: 0x61c0
 Start of program headers: 64 (bytes into file)
 Start of section headers: 163400 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 13
 Size of section headers: 64 (bytes)
 Number of section headers: 30
 Section header string table index: 29

PT_DYNAMIC section @0x219d8, 0x210 bytes (33 entries):
 DT_NEEDED (Shared library dependency) libselinux.so.1
 DT_NEEDED (Shared library dependency) libcap.so.2

...
 DT_NULL (Terminator) 0x0

1.2. Note about Fat Files

Many files in Darwin, particularly in macOS, are fat ("universal") binaries. To directly
work on the ARM64e slice, specify ARCH=arm64e in the command line, or
(recommended) put it into an exported environment variable. disarm(j) intentionally
does not support its predecessor's (jtool2's) -arch argument, since it's easier to set
the environment variable and forget about the excess fat.

disarm(j) can also emulate Darwin's lipo(1) to "suck out" the relevant slice, with
-e arch. This will automatically take out the active architecture (i.e. the one specified
in the ARCH variable). This method can be used to extract any architecture slice, though
any subsequent processing requiring disassembly will work only on arm64[e].

Output A/1-4: disarm(j)'s handling of fat files

#
When encountering a fat file, if ARCH is not set, disarm complains:
#
morpheus@eM1nent (~) % disarm /bin/ls
Fat file with 2 architectures (x86_64,arm64e). Use ARCH=... to pick desired architecture
morpheus@eM1nent (~) % export ARCH=arm64e
#
Extract active architecture (lipo(1))
#
morpheus@eM1nent (~) % disarm -e arch /bin/ls
Not performing any fixups!
Extracted to /tmp/ls.arm64e

507Appendix A: disarm(j) - The Missing Manual Page

1.3. Segmenting/Sectioning

The -i switch will display basic regions of the file - text, data, strings and stubs, as
shown above. Sometimes, however, there is a need to get into more detail, as the file
may be sectioned (ELF) or segmented (Mach-O) into different areas, which may be
mapped to different memory addresses.

1.3.1. File format agnostic segmentation

disarm(j) automatically processes the file segmentation - whether from PE
sections, ELF PT_LOADs, or Mach-O Load commands - into generalized "regions". Using
-l (lowercase) will display these regions, keeping the presentation to as file format
agnostic form as possible:

Output A/1-5(a): Demonstrating disarm -l (on a Mach-O)

Output A/1-5(b): Demonstrating disarm -l (on a PE)

$ disarm -l /samples/PE/ntdll.dll
0x0400-0xdc00 → 0x180001000-0x18000e800 .hexpthk (TEXT, 55296 bytes)
0xdc00-0x2b3400 → 0x18000f000-0x1802b4800 .text (TEXT, 2775040 bytes)
0x2b3400-0x2b4c00 → 0x1802b5000-0x1802b6800 PAGE (TEXT, 6144 bytes)
0x2b4c00-0x2b7000 → 0x1802b7000-0x1802b9400 RT (TEXT, 9216 bytes)
0x2b7000-0x2b8000 → 0x1802ba000-0x1802bb000 fothk (TEXT, 4096 bytes)
0x2b8000-0x33d600 → 0x1802bb000-0x180340600 .rdata (546304 bytes)
0x33d600-0x33fc00 → 0x180341000-0x180343600 .data (DATA, 9728 bytes)
0x33fc00-0x369400 → 0x180352000-0x18037b800 .pdata (169984 bytes)
0x369400-0x373000 → 0x18037c000-0x180385c00 .mrdata (39936 bytes)
0x373000-0x373200 → 0x180386000-0x180386200 .00cfg (512 bytes)
0x373200-0x378000 → 0x180387000-0x18038be00 .a64xrm (19968 bytes)
0x378000-0x3ed200 → 0x18038c000-0x180401200 .rsrc (479744 bytes)
0x3ed200-0x3ee600 → 0x180402000-0x180403400 .reloc (5120 bytes)

$ disarm -l /bin/ls
0x0-0x8000 -> 0x100000000-0x100008000 __TEXT (TEXT,READ-ONLY, 32768 bytes)
 0x37dc-0x7420 -> 0x1000037dc-0x100007420 __TEXT.__text (TEXT,READ-ONLY, 15428 bytes)
 0x7420-0x7960 -> 0x100007420-0x100007960 __TEXT.__auth_stubs (TEXT,READ-ONLY, 1344 bytes)
 0x7960-0x7a34 -> 0x100007960-0x100007a34 __TEXT.__const (DATA,READ-ONLY, 212 bytes)
0x7a34-0x7f28 -> 0x100007a34-0x100007f28 __TEXT.__cstring (1268 bytes)
 0x7f28-0x8000 -> 0x100007f28-0x100008000 __TEXT.__unwind_info (TEXT,READ-ONLY, 216 bytes)
0x8000-0xc000 -> 0x100008000-0x10000c000 __DATA_CONST (DATA, 16384 bytes)

0x8000-0x82a0 -> 0x100008000-0x1000082a0 __DATA_CONST.__auth_got (DATA, 672 bytes)
0x82a0-0x82d0 -> 0x1000082a0-0x1000082d0 __DATA_CONST.__got (DATA, 48 bytes)
0x82d0-0x8538 -> 0x1000082d0-0x100008538 __DATA_CONST.__const (DATA, 616 bytes)

0xc000-0x10000 -> 0x10000c000-0x100010000 __DATA (DATA, 16384 bytes)
0xc000-0xc020 -> 0x10000c000-0x10000c020 __DATA.__data (DATA, 32 bytes)

0x10000-0x15af0 -> 0x100010000-0x100015af0 __LINKEDIT (DATA,READ-ONLY, 23280 bytes)
0x104a0-0x104f0 -> 0x1000104a0-0x1000104f0 function starts (80 bytes)
0x104f0-0x10ab0 -> 0x1000104f0-0x100010ab0 symbol table (1472 bytes)
0x10ab0-0x10d68 -> 0x100010ab0-0x100010d68 indirect symbols (696 bytes)
0x10d68-0x11150 -> 0x100010d68-0x100011150 string table (1000 bytes)
0x11150-0x15af0 -> 0x100011150-0x100015af0 code signature (18848 bytes)

508 Disarming Code

1.3.2. File format specific segmentation

To see the file format specific sections, use -L. As one can expect, output here will
be significantly different, with disarm emulating jtool2(j), objdump(1)/readelf(1)
or even Windows' dumpbin.exe, according to the binary type. It is recommended to use
-v here for more verbosity:

Output A/1-6(a): Demonstrating disarm -L -v on a Mach-O (matching jtool2(j) output)

Output A/1-6(b): Demonstrating disarm -L -v on an ELF (matching readelf(1) output)

disarm -L ~/Documents/OSXBook/2nd/src/disarm/samples/ELF/ls 7:45
30 sections:
 (unnamed) (inactive) 0x0-0x0 (File: 0x0-0x0)
 .interp (program defined) 0x318-0x334 (File: 0x318-0x334)
 .note.ABI-tag (note section) 0x334-0x354 (File: 0x334-0x354)
 .note.gnu.property (note section) 0x358-0x388 (File: 0x358-0x388)
 .note.gnu.build-id (note section) 0x388-0x3ac (File: 0x388-0x3ac)
...
 .gnu_debugdata (program defined) 0x0-0xeb8 (File: 0x26e58-0x27d10)
 .shstrtab (string table section) 0x0-0x135 (File: 0x27d10-0x27e45)

1.4. Looking up regions/addresses

The -A and -O switches can be used with address or offset arguments, in order to
perform a quick lookup of one to the other. This will also resolve the name of the
containing region, which is the agnostic way of saying section (PE), section (ELF) or
segment/section (Mach-O):

Output A/1-7: Demonstrating disarm -O and -A

$ disarm -A 0x100007a49 /bin/ls
Address 0x100007a49 is at offset 0x7a49 (__TEXT.__cstring)
$ disarm -O 0x104f4 /bin/ls
Offset 0x104f4 maps to address 0x1000104f4 (Region 17: symbol table)
#
ELF (Android): Find containing ELF section
#
tokay:/ $ disarm -O 0x35e4 /system/bin/toybox
Offset 0x35e4 maps to address 0x35e4 (Region 12: .rela.dyn)
tokay:/ $ disarm -A 0x24242 /system/bin/toybox
Address 0x24242 is at offset 0x24242 (.eh_frame)

morpheus@eM1nent (~)% disarm -L -v /bin/ls
LC 0: LC_SEGMENT_64 Mem: 0x000000000-0x100000000 File: Not Mapped ---/--- __PAGEZERO
LC 1: LC_SEGMENT_64 Mem: 0x100000000-0x100008000 File: 0x0-0x8000 r-x/r-x __TEXT
 Mem: 0x1000037dc-0x100007420 File: 0x000037dc-0x00007420 __TEXT.__text (Normal)
 Mem: 0x100007420-0x100007960 File: 0x00007420-0x00007960 __TEXT.__auth_stubs (Symbol Stubs)
 Mem: 0x100007960-0x100007a34 File: 0x00007960-0x00007a34 __TEXT.__const
 Mem: 0x100007a34-0x100007f28 File: 0x00007a34-0x00007f28 __TEXT.__cstring (C-String Literals)
 Mem: 0x100007f28-0x100008000 File: 0x00007f28-0x00008000 __TEXT.__unwind_info
...
LC 4: LC_SEGMENT_64 Mem: 0x100010000-0x100018000 File: 0x10000-0x15af0 r--/r-- __LINKEDIT
LC 5: LC_DYLD_INFO

No rebase info
 Bind info: 1152 bytes at offset 65536 (0x10000-0x10480)
No Weak info
No Lazy info
 Export info: 32 bytes at offset 66688 (0x10480-0x104a0)

LC 6: LC_SYMTAB Symtab: 92 entries @0x104f0(66800), Strtab is 1000 bytes @0x10d68(68968)
LC 7: LC_DYSYMTAB

 1 local symbols at index 0
 1 external symbols at index 1
 90 undefined symbols at index 2
 No TOC
 No modtab
 174 Indirect symbols at offset 0x10ab0
 No External relocations

LC 8: LC_LOAD_DYLINKER /usr/lib/dyld
LC 9: LC_UUID UUID: 6C62FCB2-5D18-3692-8775-334D211AEB3C
LC 10: LC_BUILD_VERSION Build Version: Platform: macOS 11.0.0 SDK: 13
LC 11: LC_SOURCE_VERSION Source Version: 400.0.0.0.0
LC 12: LC_MAIN Entry Point: 0x3a3c (Mem: 0x100003a3c)
LC 13: LC_LOAD_DYLIB /usr/lib/libutil.dylib (compat ver 1.0.0, current ver 1.0.0)
LC 14: LC_LOAD_DYLIB /usr/lib/libncurses.5.4.dylib (compat ver 5.4.0, current ver 5.4.0)
LC 15: LC_LOAD_DYLIB /usr/lib/libSystem.B.dylib (compat ver 1.0.0, current ver 1319.0.0)
LC 16: LC_FUNCTION_STARTS Offset: 66720, Size: 80 (0x104a0-0x104f0) with 57 functions
LC 17: LC_DATA_IN_CODE Offset: 66800, Size: 0 (0x104f0-0x104f0)
LC 18: LC_CODE_SIGNATURE Offset: 69968, Size: 18848 (0x11150-0x15af0)

509Appendix A: disarm(j) - The Missing Manual Page

2

2

22.

.

. . Dumping

Dumping

DumpingDumping

Disarm doubles as a file dumper. This functionality is very similar to od(1), xxd(1),
or hexdump(1), and makes disarm a good replacement for platforms where one or
another of the above tools is not found by default (e.g. Android's toybox). The basic
usage is simple: disarm -d, which produces output similar to hexdump -C. This is
useful for simple file inspection.

2.1. Data Inspection

Often times raw data, dumped in hexadecimal, is nearly nonsensical to the
untrained eye. Though all hexdumpers helpfully display ASCII as part of the dump, that
may not avail when the data is in some other representation.

disarm can take any 32-bit or 64-bit quantity, specified in hexadecimal, and
attempt to interpret it in a variety of forms. The most basic one is simply as an
instruction, if possible. If the instruction in question is from a particular ARMv8.x or
ARMv9.x feature, this will also be indicated:

Output A/2-1: Command-Line quick disassembly of a binary instruction

$ disarm 0x8a989ff0
AND X16, X31, X24, ASR #39
#
LDG is a Load/Store instruction for memory tags, and requires MTE, from ARMv8.5
#
morpheus@eM1nent (~/.../disarm) % disarm 0xd965a31a
LDG X26, [X24, #1440] ; (FEAT_MTE)

When verbosity is requested (using -v), Decimal, Float, Big Endian, ASCII and
Unicode are added to the display:

Output A/2-2: Command-Line disassembly and type parsing of a hexadecimal value

$ disarm -v 0x8a989ff0
AArch64: AND X16, X31, X24, ASR #39
Decimal: -1969709072 (signed)/2325258224 (unsigned)
Binary: 10001010 10011000 10011111 11110000
Big endian: -257976182 (0xf09f988a)
Float: -0.000000
ASCII: ? ? ? ?
String:

2.2. Classic (hexdump -C) Dumping

Most often data needs to be inspected in bulk, and that is where hex dumping
remains the most common form. There are multiple standard dumping tools, such as
xxd(1) and od(1). disarm(j)'s dumping was modeled after the Author's favorite,
hexdump(1), and specifically its common -C switch. Using hexdump -C on a file (or
stdin) dumps the data in "canonical hex + ASCII display", which makes it an efficient
presentation of both printable and non-printable characters.

Using disarm -d is intentionally entirely equivalent to hexdump -C, with the one
exception that on encapsulated binaries (such as fat binaries, kernelcaches, or other
IM4P), disarm(j) will apply itself on the inner file. There is not, by design, any way to
disable this behavior (since one can always opt to use another tool for this).

Output A/2-3: Demonstrating classic dumping

Hexdumping the kernelcache dumps the file verbatim
#
morpheus@eM1nent (~)$ hexdump -C ~/Downloads/kernelcache.release.ipad16 | head -5
00000000 30 84 01 24 a9 1d 16 04 49 4d 34 50 16 04 6b 72 |0..$....IM4P..kr|
00000010 6e 6c 16 1f 4b 65 72 6e 65 6c 4d 61 6e 61 67 65 |nl..KernelManage|
00000020 6d 65 6e 74 5f 68 6f 73 74 2d 34 32 33 2e 31 30 |ment_host-423.10|
00000030 30 2e 35 04 84 01 24 a7 a4 62 76 78 32 26 6d 01 |0.5...$..bvx2&m.|
00000040 00 04 1d 40 b2 01 9e 0e 20 83 8f 7f fc fa 55 1e |...@....U.|
#
disarm cuts through the IM4P container, expands the LZFSE (bvx2) in memory,
and displays the contents of the payload. Because this is a Mach-O, disarm
also uses the address display, rather than offset
#
morpheus@eM1nent (~)$ disarm -d ~/Downloads/kernelcache.release.ipad16 | head -4
/Users/morpheus/Downloads/kernelcache.release.ipad16: This is an IM4P... with a BVX2 payload... Uncompressed 65617920 bytes
fffffe0007004000 cf fa ed fe 0c 00 00 01 02 00 00 00 0c 00 00 00 |................|
fffffe0007004010 31 01 00 00 40 55 00 00 00 00 00 00 00 00 00 00 |1...@U..........|
fffffe0007004020 1b 00 00 00 18 00 00 00 b8 b1 d2 87 48 a8 fc 65 |............H..e|

510 Disarming Code

2.3. Smart Dumping

Matching other hex dumpers in functionality is only the beginning. disarm(j) is
capable of "Smart Dumping", meaning that it can (within reasonable limits) interpret
the data being dumped, according to several heuristics:

The dump format is determined by the corresponding region metadata. This is
usually derived from segment/section flags (e.g. S_CSTRING_LITERALS for a
Mach-O), but may also be deduced through well-known or reserved names (e.g.
in the case of Swift or Objective-C sections).

"Smart dumping" nests, so that hex values are also interpreted according to
corresponding region metadata. When hex dumping, if a 64-bit hex value is found
to be a valid offset or pointer to another region, its format can be determined by
that region's metadata.

If a given data item can be interpreted as a structure, it will be displayed
accordingly. This is commonly the case with Mach-O MIG, Objective-C and Swift
binaries (and may be open in the future for third party extension).

The smart dump feature is automatically used when dumping a region (i.e. one of
those reported by disarm -l on the binary), and is both very powerful and highly
flexible. disarm's core provides a format agnostic hexdump, but each file format parser
internally extends it to its format idiosyncrasies. Mach-O, for example, provides
CFString, Objective-C, Swift, MIG and other extensions.

A good example of the versatility of smart dumping can be seen when looking at
Apple's binaries. amfid, for example, contains blocks, MIG, and vtables, all mixed in its
__DATA_CONST.__const:

Output A/2-4: Demonstrating Smart Dumping

Many more examples of smart dumping can be found throughout this book, under
the relevant discussion of whichever segment/section. Smart dumping is vastly superior
to classic, "dumb" dumping, and so it is set to be the default, with no need for any
additional switches (other than -r …, to specify the region). In case of interest in the
raw data, using -d in conjunction with -r … will override the behavior, and dump the
region specified in hexdump -C mode.

When coupled with regions, smart dumping also allows simplification of the
command line. In this way, to dump XML (legacy) entitlements in a Mach-O one can
simply use "disarm -r entitlements" (obviating the need for a dedicated --ent, as
was in jtool2(j)).

511Appendix A: disarm(j) - The Missing Manual Page

3

3

33.

.

. . Searching

Searching

SearchingSearching

An important functionality of disarm(j) is in searching for patterns in the binary.
This harnesses standard memory matching with the file format specifics and
disassembly, which allows not just presenting the search results, but also their context.
disarm is designed to show the context by displaying the memory region (segment or
section) where the pattern was found, and data surrounding the string.

3.1. Locating Strings and other data

Textual strings are often kept in their raw form - in order to be presented to the
user, or as left over debugging/tracing messages. Such strings are invaluable in reverse
engineering, as they provide hints as to the purpose of the functions using them, or
even leak out otherwise stripped or redacted symbol names.

The -f switch can be used to find all instances of a string in a given binary. Since
strings are primarily the main patterns sought, non-printable characters must be
escaped, in the usual '\x##' notation (keeping in mind that '\' is a shell escape as well,
so quotes are recommended. If the '\x##' escapes a NUL byte, the matching will
include it as well, taking the string length to be at the end of the "natural" NUL byte
terminator.

3.2. References

An important and common practice in reverse engineering is finding references to
symbols or addresses. Addresses may be found in the data sections, but are often
computed by register operations.

The --refs option is especially suitable to look for references, since it covers both
data and text sections. For the data sections, it amounts to a simple pattern matcher,
(equivalent to sifting through hexdump -C in search of a hex pattern). For the text
section, however, it will disassemble and emulate the register values, and - if the
requested value is found - print the containing function as a reference.

Adding -v will also show you the snippet of code where the reference was found.
This is especially useful for function references, since disarm will follow most register
assignments, and display the function called including its arguments.

3.3. Gadgets

Gadgets are snippets of assembly code, commonly at the end of functions, which
are used in exploitation. Various exploitation techniques repurpose gadgets, by
subverting program flow to one or more gadgets, with the attacker knowing or even
controlling the value of key registers used by the gadget. Although such practices
(called ROP (Return Oriented Programming) or JOP (Jump Oriented Programming)) are
mitigated by ARMv8.3 PAC, finding gadgets can also be useful when reverse
engineering.

The -g switch can be used to instruct disarm to locate gadgets in the code. This
requires the stating of the opcodes only, in a comma delimited manner. An example was
shown in Listing 13/2-36, and is redisplayed here:

Listing A/3-1: PMAP calls, via the GENTER wrapper

512 Disarming Code

4

4

44.

.

. . Disassembly

Disassembly

DisassemblyDisassembly

Disassembly is disarm's raison d'être. The tool originally started its life as a CLI for
quick disassembly of 32-bit ARMv8 opcodes. It was a (short) while later that it was
extended to work on files, and later still - with version 2.0 - absorbed jtool2(j)'s
Mach-O parsing abilities, updating them to catch up with Darwin changes, while further
incorporating ELF and PE support.

4.1. The core

The disassembler core is the eponymously named libdisarm, which is statically
compiled into the tool. It is a custom disassembly engine built from scratch, which
offers both advantages and disadvantages.

The main disadvantage is lack of support for some (albeit rare) opcodes. The tool
was built around the need to reverse specific binaries, and so grew to encompass most
of the ARMv8 standard (general purpose register) opcodes. SIMD is largely (but not
fully) supported, and SVE/SME even less so. On the other hand, since many of the
binaries I reversed were kernels or boot loaders, there is support for all …_ELx registers
(in MSR/MRS arguments), and even some of the (many) Apple Silicon specific registers.

The main advantage* is that disarm's engine is highly flexible. The core is a
disassembleLoop(…), which deciphers the opcodes, and follows register values using
lightweight emulation. This allows even the basic dump to annotate (as comments to
the right of the output) the values of the registers, especially function arguments.

Additionally, disarm allows the registration of callbacks, to handle register
operations, or function calls. Callbacks are the "secret sauce" which enables the more
advanced features of disarm, as used internally. When registered externally, callbacks
allow third parties to extend disarm(j) with their own logic, for better symbolic
execution or reversing needs.

4.2. Common workflows

The workflows of disassembling with disarm commonly revolve around using the
tool along with grep(1). Using grep(1) as a filter simplifies disarm(j)'s logic by
avoiding a much more complicated command-line syntax. Further, it allows disarm(j)
to be run just once, output into a file, and then perform different workflows in a much
faster and more scalable manner.

4.2.1. Quick disassembly

For quick disassembly, matching the capabilities of other disassemblers but without
any advanced features, the -q switch can be specified. On an Apple M1 this
disassembles the 2.2 million instructions of the XNU kernel (proper) in under 1.7
seconds, and the full kernel cache (11.6 million instructions) in under 7 seconds.

4.2.2. Example: Cursory (no flow control) decompilation:

When disassembling and emulating register state, disarm(j) also reconstructs
function calls, by printing the arguments from the registers and on the stack. Being a
"dry run", this functionality is obviously limited by inability to deduce any pass through
argument values,** but works very well with strings and other values.

Further, disarm(j) is designed so that such function reconstruction lines start with
white space, rather than an offset or an address, of the disassembly. Combined with the
-r switch's ability to compile to the end of the function, and grep(1), this provides a
quick, albeit partial decompilation, focusing on callouts from the current function.

* - A personal advantage was for your Author, in that there is no better way to get intimately familiar
with assembly than to implement a disassembler from scratch. Reading the 12,000+ ARM spec is already
an endeavor. Implementing it even more so.
** - at least, for the moment.

513Appendix A: disarm(j) - The Missing Manual Page

5

5

55.

.

. . Program Analysis

Program Analysis

Program AnalysisProgram Analysis

Over time, common reverse engineering work flows have been incorporated into
disarm(j), to allow automated symbolication of programs. The --analyze command
line option will exercise these work flows, and record their findings so they can be
automatically applied during future analysis. This integrates with another feature of
disarm(j) - companion files - which allow the user to quickly and easily build a
separate companion file with symbols and notes.

5.1. Analysis mode

When encountering a new binary, a cursory disassembly with disarm(j) will often
already give a high level view of its function and code. To go deeper, it's recommended
to run analysis mode, using --analyze. This must be the only option specifed
(excluding -v[v]), and will automatically record results in a companion file (see later).

Analysis mode runs two sets of code flows:

Static rules: are hard-coded into disarm(j). Those include automated
workflows for Objective-C binaries, and for kernels - both XNU and Linux. When
the file types can be reliably detected, disarm(j) will perform the analysis steps
to reconstruct symbols based on known metadata and patterns in these files.

Dynamic rules: which the user can specify using matchers. These open up
nearly limitless possibilities, harnessing disarm(j)'s argument tracking and
limited symbolic execution, to evaluate and apply user-supplied rules in a simple
textual format.

If no matcher rules are specified, only the static rules will be applied. disarm(j)
will issue a notice on this. The following output demonstrates analysis mode on a
random Objective-C binary from Darwin:

Output A/5-1: disarm(j) Objective-C binary analysis

5.2. Companion Files

As a binary is inspected and reversed, more and more details of its operation are
uncovered. Stripped functions can be given more meaningful names, and other
significant addresses, such as globals, can be found and symbolicated. disarm provides
companion files to help you symbolicate binaries. These will be auto-created in
analysis mode, but can also be created manually.

5.2.1. Naming convention

Companion files follow the naming convention of:

binaryName.arch[.UUID]

For example:

ls.ARM64.6C62FCB2-5D18-3692-8775-334D211AEB3C

morpheus@eM1nent (/tmp) % ARCH=arm64e disarm --analyze /usr/libexec/keybagd
Objective-C detected - running analysis
Analyzing Objective-C classes..
Analyzing Objective-C methods
Finding functions
Not loading matchers (…/keybagd.matchers not found) - anaylsis will be limited to function starts
Generated companion file: keybagd.ARM64.A6B8CA6C-600B-3910-87B0-D9CB33695B19
#
Example: Displaying Objective-C methods discovered from the file's __DATA_CONST.__objc*
#
morpheus@eM1nent (/tmp) % cat keybagd.ARM64.A6B8CA6C-600B-3910-87B0-D9CB33695B19 | grep '\['
0x100006578|[KBXPCListener listener:shouldAcceptNewConnection:]
0x100006704|[KBXPCService remoteProcessHasBooleanEntitlement:]
0x100006764|[KBXPCService remoteServiceName]
0x1000067e8|[KBXPCService retrievePasscodeFromFileHandle:ofLength:withbaseaddress:]
...
#
Example: Counting how many symbols (function starts, imports and objective-C) were discovered:
#
morpheus@eM1nent (/tmp) % wc -l keybagd.ARM64.A6B8CA6C-600B-3910-87B0-D9CB33695B19
 967 keybagd.ARM64.A6B8CA6C-600B-3910-87B0-D9CB33695B19

514 Disarming Code

Since disarm (presently) only handles ARM64 binaries, arch is ARM64. The UUID is
auto-deduced from the file (based on the LC_UUID of Mach-O files, or .gnu.hash of
ELFs). If one cannot be deduced, it is omitted. Using a UUID ensures that, should you
examine another version of the binary (which likely has a different address space
layout), the wrong symbols would not be used.

You need not concern yourself too much with the companion file naming
convention: Specifying --companion will instruct disarm to create an empty
companion file, either in the directory where the target binary is, or in the
present working directory. Alternatively, when running analysis (--analyze),

the companion file will be generated automatically.

5.2.2. File format

The companion file format is very simple, and can be summed up by the following
rules:

1. Empty lines are not allowed. Each line must contain a comment or an entry.

2. Comment lines, beginning with # are silently ignored. These enable you to
annotate the file.

3. Entries are of the form
Address:Symbol

Using a text file makes companion files human-readible and less prone to corruption
(unlike Mach-O .dSym or IDA .idb files, for example). This also promotes their sharing
between researchers. A common workflow is to use two terminal sessions (or
screen(1)/tmux), with one for your favorite text-editor, and another for using disarm.
As your symbolication efforts unravel more symbols you update with the editor,
repeated invocations of disarm become clearer and more informative.

5.3. Matchers

The most powerful analysis capabilities disarm offers lie in its matchers. Matchers
are rules which enable disarm's disassembly engine to auto-symbolicate a binary.
These rules can be specified in a fairly simple text file. disarm will automatically look for
this file, and (unless a companion file is already present) will automatically load it and
analyze the binary.

As this section will demonstrate, matcher syntax is easy to write and maintain, and
it is hoped that this functionality will be adopted by other disassemblers as well.

5.3.1. Argument Matchers

Among other capabilities, disarm(j) tracks register values, which enables it to
figure out arguments to functions according to the ARM PCS. This enables the creation
of simple rules for function calls - when argument #x has value y. The syntax is made
simple:

The rule format is pipe ('|') delimited:

#|matching pattern|caller_function|called_function|comments

Strings: can be specified as is (provided they don't start with '0x', with no need
for quotes, but (please) no "|"s. The matching is performed on a substring.

Integers: start with a '0x', and must be specified in hex.

An example of both matchers is shown here:

Listing A/5-2: Demonstrating argument matchers

#
Matchers for argument 0:
#
0|zone_require failed: address in unexpe|_zone_require_panic|_panic
0|0x55aa0101|_write_legacy_header|_copy_cpu_map
#
Matchers for argument 1:
#
1|idle_thread_create|_kernel_bootstrap_thread|_strncpy|PACIBSP|osfmk/kern/startup.c

515Appendix A: disarm(j) - The Missing Manual Page

5.3.2. Region Matchers

Region Matchers extend the power of matchers into data segments. There are often
plenty of pointers and magic values in data, as constants, global values, string
initializers, and more.

5.3.2.1. Matching by string value

Many structures have char * fields pointing to well known names. Considering XNU
again, examples of this abound - sysctl names, filesystem names, network domains,
to name but a few.

Assuming you found such as character string reference, it's likely to be embedded
inside a structure. Considering the case of a sysctl MIB, as discussed in 14/2.24, the
sysctl name field is 40 bytes into the structure. The following rule will therefore apply:

Listing A/5-3: Demonstarting a region string matcher

#
String Region rules: These apply to data. Format is:
_SECTION/_SEGMENT:"string"|symbol|type|+/-offset
#
__DATA_CONST|"slide"|_sysctl_kern_slide|sysctl|-40

5.3.2.2. Matching by 64-bit integer value

A more common case is where hard coded and other "magic" values are embedded
in the data section. Once again, a region matcher can be used here. This time, instead
of specifying the string in quotes, specify val=0x…, allowing for the full 64-bit value, and
keeping in mind it must be aligned (that is, be at address or offset 0x…0 or 0x…8. This
can be a portion of a bigger value - this won't matter, so long as unicity is assured:

Listing A/5-4: Demonstarting a region string matcher

As another example of two simple but far reaching rules, the following two
matchers can be used to reliably locate XNU's sysent and mach_trap_table. Not only
are these important symbols by themselves, but they also positively identify the binary
analyzed as a XNU kernel, which can kick off additional analysis rules.

Listing A/5-5: Demonstrating XNU's sysent and mach_trap_table matchers

#
Example for XNU's two most important tables - _sysent and _mach_trap_table
Our "magic" patterns are at varying offsets (-40, -240, respectively)
#
__DATA_CONST|val=0x0004000100000000|_sysent|_sysent|-40
__DATA_CONST|val=0x0000000000000504|_mach_trap_table|_mach_trap_table|-240

5.3.3. Opcode Matchers

Functions will often refer to globals, which are loaded using specific instruction
sequences (commonly, ADRP/ADD). When a function is known, it's possible to run an
opcode matchers. Due to their performance overhead, these can only defined in the
scope of a previously defined or discovered symbol. The matching disregards
arguments, looking only at the opcodes themselves, but since disarm(j) emulates the
instructions, the final value matched can be specified as the value of a register.

#
The well known Apple NVRAM Guid 7C436110-AB2A-4BBB-A880-FE41995C9F8
Assign it the c++ mangled "gAppleNVRAMGuid" at offset 0 (GUID beginning)
#
$...
__TEXT.__const|val=0xbb4b2aab1061437c|__ZL15gAppleNVRAMGuid||0

516 Disarming Code

As an example, let's assume your previous analysis of XNU revealed the address of
_zone_require_panic, after setting an argument matcher for its panic message. The
disassembly starts like this:

Listing A/5-6: Interesting disassembly...

Since XNU is open source, we can see that the beginning of the function looks like
this:

Listing A/5-7: ...and its corresponding source

A bit of digging (or looking through 12/2) would show that from_zone_map looks at
the zone_info.zi_map_range. This is the first field in the zone_info structure, and
therefore has the same address in memory. In the assembly, that would be in X9, the Xt
of the ADD instruction. Crafting an opcode rule for this is therefore:

Listing A/5-8: Demonstrating opcode matchers

#
Opcode matching: Specify the symbol to run in (an exported symbol or a previously
discovered one), and then use opcodes:opcode, The value
you want to match and symbolicate will can be specified in the Xt, Xd, Xn, etc
of the instruction (per the ARM specification
#
_zone_require_panic|opcodes:ADRP,ADD|Xt=zone_array|

Opcode matchers are run at the last stage of matching, since they may rely on
function symbols defined in other matchers.

517Appendix A: disarm(j) - The Missing Manual Page

518 Disarming Code

B

jtrace(j) - the missing manual page

This appendix provides a tutorial and documentation for using jtrace(j).
Designed as a drop-in replacement to the highly useful strace(1) utility, jtrace(j)
not only matches its counterpart's functionality, but augments and exceeds it using new
switches, and a powerful plugin architecture.

519

1

1

11.

.

. . Basic Usage (

Basic Usage (

Basic Usage (Basic Usage (strace(1)

strace(1)

strace(1)strace(1) compatibility)

 compatibility)

 compatibility) compatibility)

Users of strace(1) will find jtrace(j) fully compatible with it. Although the tools
share no common code, care has been taken to ensure that the latter can serve as a
drop in replacement for the former, by honoring the following command line options:

Table B/1-1: The strace(1) compatible options of jtrace(j)

Option Purpose
-o outputFile Output to outputFile, rather than stdout

-f Follow Forks

-t[t[t]] Timestamping

-T Time spent in system call

-p pid Attach to a process/thread by pid

-v Verbose output

-y Resolve file descriptors (default behavior, so ignored)

2

2

22.

.

. . Enhancements (and

Enhancements (and

Enhancements (and Enhancements (and jtrace(j)

jtrace(j)

jtrace(j)jtrace(j)-specific options)

-specific options)

-specific options)-specific options)

In addition to the above, strace(1)-compatible options, jtrace(j) provides
specific options, offering extended functionality. These are summarized in the following
table, and then detailed.

Table B/2-1: The specific command-line options of jtrace(j)

Option Purpose
-F (deprecated by strace(1) - Follow threads, but NOT processes

-O Redirect output to jtrace.out

--color Enable color (also: JCOLOR=1 in environment)

--thread Attach to a process/thread by name

--plugin pluginName Load pluginName (if not loaded automatically)

2.1. Color

As with all the other J-tools, ANSI colors provide an important aspect of detail in the
output. jtrace's output is voluminous, and colors really helps to focus on the parts
which matter: system call/function names, arguments, and timestamps.

ANSI colors, however, work by means of escape sequences (a.k.a "curses"), which
are not always legible, for example on incompatible terminal emulators, or when piping
('|') to some other program, notably more(1) (but not less(1), which can support
curses with -R). Color is therefore not enabled by default, but may be enabled in one of
several ways:

The --color argument: when supplied, will explicitly enable colors.

The JCOLOR environment variable: Setting this lets you choose between a one
time colored invocation (if specified on the command line), or as a default (if
exported into the shell environment.

The color keyword: in a .jtc file, will apply color (when used by itself or with
'on') or disable color (when used with 'off') for all invocations of jtrace using
that configuration.

2.2. Marks

In many instances, tracing will require you to invoke some command or condition
while tracing a running process (e.g. some daemon). The problem here is that the
target won't necessarily sit idly waiting for that condition, and may perform other calls
in the meanwhile, causing jtrace to spew output.

Marking enables you to tag the output of jtrace with a simple textual mark -
optionally colorized in red - by pressing the 'M' key in an active jtrace session.
Subsequent presses of 'M' will embed additional marks - simply titled "Mark #" with a
monotonically increasing number. This can then be useful as you sift through the
copious output, as you will be able to jump to the exact spots where marks were placed
by a simple find operation in your favorite terminal or editor.

520 Disarming Code

2.3. Freeze/Thaw

Considering again the challenges of tracing busily running processes, another
approach is to selectively freeze the process. This can be used while setting up a test
condition.

Pressing 'F' will 'F'reeze all threads of the target process currently being traced.
Pressing 'T' will 'T'haw them. Quitting jtrace will automatically thaw any frozen
processes. Note, however, the caveats:

There is an inherent delay between jtrace's operation and that of the process.
This opens up a small window (and possibly, race conditions) between the request
to 'F'reeze, and the actual suspension of the target(s).

If jtrace is not started with -f, it will only freeze the specific thread it is
attached to.

Freezing a process is not without its own complications, and may adversely affect
system stability (especially if the process is an important one, like Android's
system_server).

2.4. Config (.jtc) files

Tracing the same processes or threads usually requires the same, or very similar
command line. In order to ease use, common options for a trace can be specified in a
config file. These are simple textual files, which can be dropped in ${JTRACE_DIR}
(default: /data/local/tmp, since it's the only writable location by shell). The files will be
auto-loaded if their name matches the process/thread name being traced, or - if named
"default.jtc (for all tracees).

The vocabulary of the configuration files is presently very limited, and consists of
the following keywords:

color

threads (to automatically trace all threads, like -F)

suppress (with a comma-delimited list of system call names to suppress. All
others enabled.

enable (with a comma-delimited list of system call names to enable. All others
suppressed.

2.5. Androidisms

jtrace(j) will run on any Linux system, either ARM64 or the legacy X86_64. First
and foremost, however, it was designed for Android. As such, it contains built-in
extensions specific to that platform. These include:

Binder message support: Binder goes three levels deep (sometimes more) to
obtain the parcel data pointed to from the struct binder_transaction, which
itself is pointed to from the binder_transaction's data pointer, which was
pointed to from the binder_write_read, the ioctl(2) argument (whew!). This
is technically done through an ioctl(2) plugin (see next), but - because Binder
is nigh-omnipresent on Android, has been compiled into the binary. The logic only
gets activated if the fd of the ioctl(2) is detected to be any of the /dev/*binder
flavors. The Binder hard-coded plugin itself allows further plugins, to allow
extending functionality to look directly at parcels, or filter certain transaction
codes.

For full efficacy of Binder support, please install the .aidl files of
your Android version in /data/local/tmp/aidl or anywhere pointed to by
the JAIDL= environment variable.

System property requests: Currently in protocol version 2, are passed through
sendmsg(2) calls over /dev/socket/property_service. They will automatically be
reconstructed to the property/value setting, rather than showing the raw
message, unless -v is specified.

521Appendix B: jtrace(j) - The Missing Manual Page

3

3

33.

.

. . Plugins

Plugins

PluginsPlugins

Unlike strace(1), or ltrace(1), whose system call and library hook logic is fixed,
jtrace(j)'s is dynamic. jtrace(j) offers a simple but capable API, allowing
developers to extend the default handlers, block them, or replace them altogether. This
brings an entirely new dimension of functionality to the tool, extending it from a passive
tracer to an active one, capable of fuzzing, memory-manipulation and fault injection.

3.1. System call handlers

JTrace plugins can install any number of system call handlers. They are expected to
do so in their constructor, since this code is guaranteed to be called by jtrace(j) on
plugin load. Only one API is required here, in order to register the system call handler.
This is kept simple, as follows:

Listing B/3-1: The JTrace register API

The system call registration requires the system call name, which is intentional,
since the numbering of system calls on Linux tends to change across architectures. The
Handler argument is a function taking in two arguments: A boolean, indicating if called
on entry or exit (since the handler may be called on either or on both), and the pid
(actually, the thread identifier) in which the system call executes.

The handler is then free to do whatever is needed, since at this point jtrace(j) is
blocking the system call and is running the plugin code. Please observe the following:

Register values can and should be accessed only through the Register API
([get/set]RegValue(…), discussed next)

The plugin code SHOULD NOT use printf(3), or, in fact, write any output to
stdout/stderr. This is because in a multithreaded environment, the <stdio.h>
functions use locking, which slows down jtrace(j), and thus also the inferior.

Instead, the plugin code can use three functions here:
getOutputBuffer(void): will return a pointer to a thread-specific output
buffer, that the plugin can use. This is often part of the larger per-thread
buffer jtrace(j) uses for output. Do not underflow it.

getOutputBufferSize(void): will return the output buffer size. Note that
the buffer size for ALL thread buffered output is currently hard coded at
around 1MB. Depending on how much output has amassed, you might get
to use a lot less (but still a guaranteed O(256) bytes. Friendly advice - be
sparse, and save copious output to other files. If you overrun this buffer,
jtrace(j) *will* crash, but the overflow will be yours, not jtrace(j).

updateOutputBufferPos(howMuch): please keep count (for example, by
collecting the return value of sprintf(3)) of how many bytes you write
into the buffer. At the end of your output, remember to call this function in
order to have jtrace(j) use your output. Otherwise, your plugin code will
return, but jtrace(j) might overwrite it with other syscalls' output.

522 Disarming Code

If you need Thread Local Storage (TLS) for the plugin - call
getPluginPrivateData(void). This returns a void pointer to at least a
page of data. If you need more than that, use pointers.

The very specific case of Binder parcels is best served by a special kind of plugin:

Listing B/3-2: The JTrace binder-specific API

This enables invocation of the handler for a specific interface name (NULL for all).
The Hook is then called with the parcel (which will contain the interface), its Size, the
method Code (from the struct binder_transaciton) and a boolean indicating if this
is a request or a reply. The pointer to the parcel is a copy of the incoming or outgoing
parcel. At present, the original cannot be modified (by design, not for lack of
capability).

3.2. The Register API

One obvious omission from the system call handler arguments are the registers.
This is intentional as of JTrace v2. The rationale here is to maintain plugin portability,
even between different architectures, by forcing register access through an architecture
agnostic API:

Listing B/3-3: The JTrace register API

Target register access is abstracted by two main calls - [get/set]RegValue.
Registers are encoded by their position as arguments. This provides the abstraction of
the architecture's calling convention, allowing the same plugin code to work across
different architectures.

523Appendix B: jtrace(j) - The Missing Manual Page

Table B/3-4: jtrace's [get/set]RegValue constants

Constant ARM64 X86_64
 REG_ARG_0 X0 RDI

REG_ARG_1 X1 RSI

REG_ARG_2 X2 RDX

REG_ARG_3 X3 RCX

REG_ARG_4 X4 R8

REG_ARG_5 X5 R9

In ARM architectures, using values higher than REG_ARG_5 (i.e. 6..29) will retrieve
the other general purpose registers. This is generally discouraged, but deliberately left
supported for advanced users.

3.3. The Memory API

Plugin code will often need to read or write to an inferior's memory. For this,
jtrace(j) provides a simple memory API:

Listing B/3-5: The JTrace memory API

The [read/write]ProcessMemory are straightforward. They hide the underlying
implementation - which may be ptrace(…[PEEK/POKE]…), process_vm_[read/write]v
or /proc/pid//mem - and just access the memory in the most efficient of the three ways
found to be possible (usually, the last).

getIOVecDataFromMsgHdr is a convenience function left for those cases wherein
sendmsg(2) or recvmsg(2) are encountered, which would require multiple read(2)s to
get to the struct iovecs in the message header, and then their buffer contents.

3.4. The FD API

I/O operations will work on file descriptors. Information on these can oe obtained
through the /proc/pid/fd entries, but jtrace(j) provides a convenience API to do that:

Listing B/3-6: The JTrace FD API

3.5. See Also

The downloadable .tgz of jtrace(j) provides plenty open source examples of
plugins, and a simple script to compile them, using the Android NDK.

524 Disarming Code

